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Uniform Limit Theorems For Syuchronous Processes

With Applications To Queues

Petef Glyan t

Karl Si 2man

Abstract

Let X = X(t) > 0} be a positive recurrent synchronous proc, (FRS), that is,

a proces for which there exjtn an increasing sequence of random ti = {r(k)}

such :ha: ;,r each k the distribution of Gk)X = {X(t + r(k)) t> 0} is the sane

and the cycle lengths , df r(n + 1) - r(n) have finite first moment. In the present

paper we investi gate conditions under which the Cesaro averaged functionals ;(f) 1-

jfoE((6,X))dj converge uniformly (over a class of functions) to r(f), whenr, is the

stat onary distribution of X. We show that A(f) - v(f) uniformly over f satisfying

II <1 (total variion convergence). We also show that to obtain unifrm emyergence

over all!f satis1*ig o (o E L+(v) fixed) requires phacing further conditions on

the PRS. This is in iharp contrst to both dcasal regenerative protees and discrete

time Harris recurrent Markor cLains (where renewal theory can be applied) where such

uniform convergence holds withor: any fuzrther condition=. For ontinuous time positive

Firrs recurrent Mirkv proce (where renewal theory can not be applied) we show that

6ehe further, conditions ae in fact automticaly satisfied. In this contaxt, applition-

to queueing ri-dek ame given.

Key WordsrSynchonor. Procm, Commo convgence, Limit Theorem, Point Procmsm

Dpartment of Operations Research, S&,nford University, Stanford, CA 94305-4022.
Research supported by the U.S. Army Research Office under Contract DAAL-03-88-K-0063,
and a grant of the Natural Sciences of Engineering Research Council of Canada.

Depuartment of Industrial Engineering and Operations Research, Columbia University, Y,
NY 10027. Research supported by NSF Grant DDM 895 7825.

L ..

I ).-' " I,,t i



1. Preliminaries and Introduction

Throughout this paper, X = {X(t) : t > 0} will denote a stochastic process taking values in a complete

separable metric state space S and having paths in the space V = Vs[O, oc) of functions f R.+ - S that

are right continuous and have left hand limits. V is endowed with the Skorohod topology (and is a complete

separable metric space). (QlY, P) will denote the underlying probability space and we view X as a random

element of V. Let A denote an arbitrary fixed element not in the set S. We then endow S 4 S U {A} with

the one-point compactification topology.

Definition 1.1. X is said to be a synchronous process with respect to the random times 0 < r(0) <

r(1) < ... ( with lim.-.. r(n) = oo a.s. ) if {X,, : n > 1} forms a stationary sequence in the space Ds,

where

_ X(r(n-1)+t), if0<t <T ;A, ift >_ T..

T, df r(n) - r(n - 1) is called the n"h cycle length, X, is called the nth cycle and we refer to (r(n)) as the

synch-times for X with counting process N(t) = the number of synch times that fall in the interval [0, t].

Definition 1.2. A synchronous process X is called non-delayed if r(0) = 0 a.s.; delayed otherwise. It

is called positive recurrent if E(T) < co; null recurrent otherwise. It is called ergodic if it is positive

recurrent and the invariant ,r-field, 1, of {X,,T} is trivial. A cLe 1 is called the rate of the synch times.

17'777 is called the conditional rate.

From now on, PRS will be used to abbreviate positive recurrent synchronous process. To help the

reader, an appendix is included at the end of this paper giving a brief introduction to PRS's.

0 : V - D denotes the shift operator (ez)(s) = z(t + s), P0 denotes the probability measure under

which X is non-delayed; P0 (A) = P(O,(l)X E A) and P" denotes the probability measure under which X

has the stationary distribution r (see the Appendix).

The important point here is that at the random times r(k), X(t) and its future probabilistically start

over. However, in contrast to classical regenerative processes (CRP's), or the regenerative structure found

in Harris recurrent Markov chains (HRMC's), the future is not necessarily independent of any of the past

{r(1). r(k);X(s) :0 < s < r(k)). In particular r does not (in general) form a renewal process
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and hence renewal theory does not apply to synchronous processes. Natural questions arise,

however, as to which of known limit theorems etc. that hold for CRP's and HRMC's actually do not depend

upon renewal theory and can in fact be extended to cover PRS's. One such result was given recently in [4

where it was shown that for a PRS, the distributions of 0, o X d=ef {X(s + t) : t > 0} are in fact tight in the

function space V. But what about limit theorems for PRS's? For example, although N(t)/t - A P a.s.

as t - o, what can be said about

E(N(t)/t - EA, (1.1)

which does hold true for a renewal process? Similarly, for an ergodic PRS, although ff.f (0, o X)ds -

,r(f), P0  a.s. for any f E L1 (Tr), what can be said about

= Eof (0, o X)ds -. 7r(f), f E L, (-), (1.2)

or

sup 1(1)-1 (f)- Q , (1.3)

or (more generally)

sup 1;,(f) - r(f) - 0, for each g E L'(r), (1.4)
I150

all three of which holds true for CRP's and HRMC's?

We show that (1.3) is always true for a PRS (ergodic or not), whereas (1.1), (1.2) and (1.4) require

extra conditions (even in the ergodic case). These extra conditions turn out to be automatically satisfied for

continuous time Harris recurrent Markov processes (HRMP's). In this context we give some applications to

queueing models.

2. Limit theorems for N(t)

In this section we present counterexamples showing that (1.1) is false in general. In fact we show that even

in the ergodic case it is possible that EON(t) = oo.

Let r = {r(n)} be the synch times of a non-delayed PRS X. Let N(t) denote the corresponding counting

process. Under P0 , X is non-delayed and the point process r is called a Pa/m version in which case {T,}

forms a stationary sequence. Under P*, X is stationary as is the point process r (see for example, [7]).
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Example (1) Let Z be a r.v. such that P(Z > 1) = I and E(Z) = cc. Define T, = 1/Z (n > 1); thus

,r(n) = n/Z and E(T,) < 1 < oo. Observe that P(N(t) > n) = P(r(n) < t) = P(tZ > n) so that indeed

E(N(t)) = oo for all t > 0. Observe, however, that {T,} is not ergodic; its invariant a-field is precisely a(Z).

Whereas Example (1) is not ergodic, our next example is.

Example (2) Consider a discrete time renewal process with cycle length distribution P = {Pk

k > 1} having finite and non-zero first moment, I/p, but infinite second moment. Let D(n) denote the

corresponding discrete time forward recurrence time process. B is a positive recurrent Markov chain with
def

invariant probability distribution a,, Ph (the equilibrium distribution of P). a has infinite first

moment; F', kcrk = oo. Let h(k) = 1/(k2 + 1) and define a point process by T" = h(B(n)); r(n) =

T, + T2 + -+- T,. Observe that 0 < T < 1 for all n. Under a, {T,,} is a stationary ergodic sequence

and hence corresponds to a Palm version with 0 < A = {Eah(B())}'- < cc. It is also positive recurrent

regenerative; it regenerates whenever B(n) = 0. Let - = min{n > 0 B(n) = 0}, and observe that - = B(0).

Let M = F" 0 h(i). Consider the random time T = r(7) = T + .+ T., Observe that T < M < 0o and

that N('jX0 = k) = k. Thus for t > M we obtain

00

E°Y(t) - E0 {N(t)jB(0) = k}ak
k=1

: Z E 0 {N(T)IB(0) = k}ak
k=1

- : kcr& = 00.
k=1

The important point here is that in general, {N(t)/t :t > 0} is not uniformly integrable (UI). We do,

however, have some sufficient conditions.

Proposition 2.1. Suppose 0 < A- ' = EO(T) < oo. .f either there exists an c > 0 such that P°(T > ) -

1, or the interevent times {T } form a k-dependent process, then (1.1) holds.

Proof: Suppose P(T > c) = 1. Then for all t > 0, 411 < + 1, Pa.s. (even in the delayed

case) and hence is Ul. Suppose now that the T. are k-dependent, that is, for each n, {T,+ : j > k} is

independent of {T, : m < n}. It follows that for eachi (0 < i < k - 1) T(i) = {Tk,,+i : n > 1} defines

a (possibly delayed) renewal process. Let N((t) denote the corresponding i'h counting process. Clearly
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N)< t(t) + ,(")(t) + + N(k ' (t). Since .=-=2 is UI for each i (because, for each i, it is from a

renewal process), so is U

Remark (2.1): By changing our example (2) slightly, we can actually obtain a null recur-

rent version: Let {T} and N(t) be from example (2) (under o), and let H, denote the

distribution of T. Let {Lk} be non-negative i.i.d. - H2 , with H2 having infinite first

moment. Define ,o = 0, -tk+l = min{n > -,, : B(n) = 0). Between T7h,-1 and T , insert

Lk. The idea here is to start off the k regenerative cycle with Lk and then proceed as

before. This gives rise to a new sequence of interevent times 't,. laking a Palm version

of this new point process yields a stationary ergodic sequence f' such that E(7n) = zC;

(I-p)HI +pH where p = 1/(1 + 1/u). Letting ,N(t) denote the associated counting

process, we obtain E(N (t)) > (1 - p)E(N(t)) = oo for t > M.

Remark (2.2): In our example(2), it is true, however (as is well known more generally in

the point process literature), that E*(N(t)) = At for all t > 0 and hence that the intensity

def
d= E(N(1)) is finite and is equal to A. It is only the Palm version that can blow up.

3.1 Uniform limit theorems for X

We first present an example of an ergodic PRS together with an f E Li(r), such that ;T(f) = 0o. In

particular, (1.2) does not hold.

Example (3) Consider T and B(n) from example (2). Form a semi-Markov process X(t) by using

T, as the holding time for B,. Then for B(0) - a, X is an ergodic PRS with synch times r(n). Now choose

an f 2 0 such that fh E LI(a) but

Z: f (i)h(i) EZak = 00.
i _k>i

Then
jT° l Zc Xs)s= EO{jf'f(X(s))ds;X(O) = k}

k k

- Z h ak < 0o.
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Hence f E L(ir). On the othc: hand, for t > M,

t (f) = E° 0 f (.V(s))ds > E0  f(X(s))ds
T

= E{f °  (X(s))ds;X(O) = k}

k

= EE0 {Zf(k-j)h(k-j);X(0) = I}
I; J=O

k

= o1: !(j)h(i)
k 3=O

=: AMUJ) ,)Zk = 00
j=o k>)'

We do, however, have the following

Theorem 3.1. If X is PRS and g E L(r) such that Ef (g(OX)ds 0 and {ffog(9, oX)ds

t > 01 is UI under P', then

sup i4,(f) - 7r(f)I - 0. (3.1)

Before proving Theorem 3.1 we state an important corollary obtained immediately by using the function

g 1.

CoroUary 3.1. If X is a PRS then "it converges to 7r in total variation.

Proof of Theorem 3.1: Assume at first that 0 < f < g and that X is non-delayed. For c > 0 let A((, t)

denote the event {N(t) > c + €)t). Let J,, = J,(f) ' -0 f(O o X)dt. Let Ex denote E ° conditional

on the invariant u-field 1. Then

E j f(OX)ds = -E 1 {j f(0,X)ds;A(c,t)'} + - x{ f(0,X)ds; A(c,t) }
1 '

<(W+ )t+EzJi + -Ez{ g(X)ds;.A(c,t)}
- t 1

Taking expectations in (3.2) with respect to E0 yields

IE0 f f (OX)ds<ir(f) + (c + I )E°J0 + ti{ g(e.X)ds;A(E,t)}. (3.3)

By the uniform integrability hypothesis, the last term in (3.3) tends to zero. Moreover, c was arbitrary. We

thus obtain

"rn sup{f 7t(f) - ir(f)} < 0. (3.4)

t-oa f<



In a similar manner we obtain a lower bound: For e > 0

1 Ez o If(0,X)ds Ez{ 
k=i

-t - 1 1
)EzJ - 7 Ez{ E Jt(g);A(-t,t)'}

k=1

1 1 r(i - )ti
> AEzJ 1 - (c + -)EzJ 1 - -EZ{ 1

k=1

which after taking expectations yields

k=,1Thf) - .r/) >_ -(E + )E" EzJ 1 - 4.E° E J~g;A(-. QC/ (35)

Since g E 1 (-r), -, j(g) is UI since it converges a.s. to AEzJ(g) and has mean, E°{rI EzJ1 (g)},

for each t. Thus the last term in (3.5) tends to zero. Consequently

Fi' sup{r(f) - (f)} <- 0, (3.6)
t--oo/_<,

and we thus obtain (3.1). The case of f with arbitrary sign can be handled similarly; we leave out the details.

In the delayed case, we have on the one hand that

1 o 1 E ,^E 1 'f.7
-E f(0, o X)ds < g(O,X)ds + r f(9 o X)ds. (3.7)

The first term on the rhs tends to zero by assumption, thus, giving the ne-essary upper bound. On the other

hand, for t> M > 0

Ejf(0, o X)ds = E{] f(0, o X)ds; r(O) < M} + E0 {] f(0, c X)ds; r(O) > M}

> E1o) f(O, o X)ds; r(O)< M}

C0
- M

> E°{j f(0, o X)ds;r(O) < M} (3.8)

-zM I~o

> E{j f(0, o X)ds} - E° g(O, o X)ds; r(O)> M}

> E0 {j f(9, o X)ds} - E°{ g(8, o X)ds} - E{j g(O, o X)ds;r(O) > M}.

Using in M = ct, 0 < c < 1, in (3.8) yields

I t I
!Ejf'(0, o X)ds > !E0{jf (0, o X)ds} - 7E'{if 9(O, . X)ds} - 1 Eo{j (g(8, o X)ds; T(0) > t}).

(3.9)

The last integral above tends to zero by the UI assumption under Po. The middle integral converges to

cE 0 {AEzJj(g)}. Thus, letting c tend to zero yields (together with (3.7)) the desired result. U
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Proposition 3.1. For a PRS, if either there exists an c > 0 such that P°(T > c) = 1, or the cycl.s {X,}

form a k-dependent process, then (3.1) holds for all g E L'(7r) su_. that E fjo ( ) g(O,X)ds < cc.

Proof: From Theorem 3.1, it suffices to show that {f fg(0, o X)ds : t > 01 is uniformly integrable under

P0 . If P°(T > c) = 1 then 1fo'g(O, o X)ds <, j". - J,(g) which is UI for g E L'(7r). Now suppose that

the cycles are k-dependent (in particular, X is ergodic). Then

f N(I)+k

g(OoX)ds< E ji(g)
J=1 (3.6)
k c=E Jj(g) + E jj(g)1("v(t)> j - 1.

J=--- j---k+l

By the assumption of k-dependency, the indicator I(N(t) > j - k) is independent of Jj(g) and hence taking

expectations in (3.6) yields

EO 1(O, o X)ds < (E°N(t) + k)E 0 J(g). (3-7)

By Proposition 2 1. {N(t)lt) is Ul and hence by (3.7) so is {T fog(O, o X)ds: t > 0}. U

Remark(3.1): If X is null recurrent and non-ergodic, it is still possible that ?r as defined in

(A.3) is a probability measure. In this case Theorem 3.1 remains valid. Take for example,

a mixture of Poisson processes: Choose a r.v. Y such that P(0 < Y < 1) = 1 and

E(1/Y) = :c. Given Y, let {r(k)} be a (non-delayed) Poisson process at rate Y. Define

X(t) as the forward recurrence time of this point process. Then the invariant u-field is

precisely u,(Y), E(TjY) = 1/Y and hence E(Ti) = oo. Moreover, given Y, the (marginal)

steady-state distribution of X(t) is exponential at rate Y. Thus the (unconditional) steady-

state distribution is given by F(z) = 1 - E(e-yz).

Remark(3.2): The condition j.E foA7(') g(OX)ds -. )is eqivalent to g(8.X)ds).

4. Continuous time Harris recurrent Markov processes

In this section we establish uniform limit theorems for continuous time Harris recurrent Markov processes

(HRMP's) analogous to those already known (in the literature) to be true for discrete time Harris recurrent

8



Markov processes, cailed Harris recurrent Markov chains (HRtC's). Although renewal theory can be used

to analyze HRMC's, the same is not true for HRMP's (as defined below).

Let {Z(t) : t > 0} denote a Markov process with Polish state space S and paths in Ds. We shall always

assume that Z has the strong Markov property.

Z is called Harris Recurrent if there exists a non-trivial a-finite measure /j on the Borel sets of S such

that for any Borel set .4 C $

p(A)>0 =P, (j 1AoZ(t)dt= o) = 1 for all z. (4.1)

It is known that a HRMP has a unique invariant measure (up to multiplicative constant); see for

example, [2J and [10]. If the invariant measure is finite then it is normalized to a probability measure in

which case Z is called positive recurrent. In Theorem 2 of [10], it is proved that a Markov process Z is a

positive HRMP if and only if it is a positive recurrent one-dependent regenerative (od-R) process. that is.

an ergodic synchronous process with one dependent cycles. In particular, Corolary 3.1 and Proposition 3.1

both apply to positive HRMP's. So, for example, given any initial state Z 0 = :, it follows that the Cesaro

averaged measures (A) 1! 7foEIA o (O,Z)ds converge to 7r in total variation as t - oc.

Once the od-R points have been selected for a RRMP, a natural question arises as to wether or not, by

placing some regularity conditions (non-lattice (or spread-out) cycle length distribution, etc.) on the cycles

of an HRMP Z, the unaveraged distributions will converge weakly (or, even better, in total variation) to -,

that is. if kf(f) = E (f(6,Z)) - T(f) for all bounded continuous f. The answer is no; a counterexample

is given in Remark(3.2) of [101. Also see example(1) of [4]. (It is true, however, that for each :, {p, : t > 0}

is a tight collection of measures (see Theorem 2.1 of [41)).

Continuing in the spirit of Cesaro convergence we have

Proposition 4.1. If Z is a positive HRMP with stationary distribution r then for each g E L+(7r),

sup g(f) - r(f)I - 0 for almost every : w.r.t. r. (4.1)

def t( defProof: Let r(z) = E, f; (° ) g(O, X)ds and £ {z : r(z) < oo}. From Proposition 3.1 it suffices to show

that r(.) = 1. Now,

7r(C) = AEO j (r(Z(s) < oo)ds. (4.2)
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Moreover.

E°{r(Z(s);r(1) > s) = E{EO I (g(0,.Z)du}; r(1) > s)}

= E{j (g(OuZ)du ;r(1) > s)}

< E0{ (g(9.Z)du} <

Thus r(Z(s)I(r(1) > s)) < -c P0 a.s. and hence P°{r(Z(s)) < xo; r(l) > s} = 1 for all s > 0. Integrating

over s yields the result. U

Proposition 4.2. f Z is a positive HRMP with stationary distribution ir then

f ,(dz) sup I7(f) - r(f)l - 0. (4.3)

for all g E L'(,r) such that Eo{fr" ) u 'O X)du} < o.

Proof: We must shiow that the error bounds for 177(f) - r(f)l can be integrated over z with respect to

-r . From the bounds obtained in (3.5)-(3.9) it suffices to show that h(:)df E, [(0)g(9,X)ds is in Lt(I).

An easy calculation yields

f r(d--)h(-) = AE°o IT 0o fo (0(,X)duds

= A 10  I g(OX)dudsJo I.

= AE°  ug(OuX)du

Remark(4.1): In the proof of Proposition 4.1, the assertion that r(E) = 1 amounts, in

the terminology of discrete time Markov chain theory, to showing that a.e. state z (with

respect to ir) is g - regular (see Proposition 5.13 of Nummelin[6]). In fact, Proposition

4.1 can be viewed as a continuous time Cesaro- average analog of Corollary 6.7i) in [6].

Remark(4.2): In Asmussen [1] the definition of HRMP is different than ours. Ours comes

from Azema, Duflo and Revuz [2]. Asmussen's definition is more restrictive and in partic-

ular implies the existence of an embedded renewal process.
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5. Applications to queues

In :91 the stability of open Jackson queueing networks is established where service times are i.i.d. with general

distribution, exogenous interarrival times are i.i.d. with general distribution, and the routing is Markovian.

We present here some immediate consequences of section 4 in the context of the above stability result.

Consider a c node queueing netwo-rk with the n'h exogenous customer (denoted by C,) arriving at time

t, with 0 < t1 :< t, ' ... and in-_o, tn = oo. Each node is a FIFO single server station (with unlimited

size waiting room). Upon arrival, each customer is assigned (independent of t.i: past) an initial station

according to the initial distribution P = (pl, P2,.-,P,). Routing is Markovian : after completing service

at node i, a customer is routed (independent of all else) to the end of the queue at node j with probability

r,.,(1 < i. j _< c). In addition, w let ri,g denote the probability of leaving the system after a service

completion at node i (and going home). Thus each customer's sequence cf routings forms a Markov chain

(with initial distribution P) which we assume has precisely one set of absorbing states, the singleton {g}.

R = (r,,,) is called the routing matrix. Service times at the i" node {Sk(i) : k > 0} are handed out by the

server and assumed i.i.d. with distribution Gi and mean 0 < 1/i < oo; S(i) will denote a generic service

time - G,. We assume that exogenous arrival epochs (t,) form a renewal proces with rate 0 < A < oo

and (i.i.d.) interarrival times T,, = t,+l - t,; E(T,) = 1/A. T will denote a generic interarrival time. We

let , denote the initial node for C,; (I,) forms an i.i.d, sequence with distribution P. The service time

sequences, the interarrival time sequencf , and the initial node sequence are assumed independent. This is

called a Jackson open network (JON) with general distribution i.i.d. input.

Let Q, = (Q.(1), Q.(2),...,Q.(c)) denote the queue lengths (not including those in service) at the

c nodes at time t,,- and Y, = (Y.(l),Y(2) .... Yn(c)) the residual service times (set to zero if server is

free). It easily follows (by all the i.i.d. assumptions) that the process X,, = (Q,,,Y,) forms a Markov chain

with state space X = N. x R +. Let X(t) = (Q(t),Y(t)) denote the queue length vector and residual

service time vector at time t; X,, = X(t,-). Let B(t) denote the forward recurrence time of the renewal

process of exogenous arrivals; B(t) is the time until the next arrival after time t. It is eaoily seen that

Z(i) = (X(t), B(t)) is a Markov process with state space S = X x R+ and paths in V.

For each i (I < i < c), let N,(i) denote the (random) number of times that C, will desire service at

11



defde

node i. M. - E(, (i)) < o (in fact has finite moments of all orders). Define Ai = AM,; we refer to Ai as

the total arrival rate to node i. It is well known that the Ai's are the unique solution to the following set of

c equations

A1 = Ap + ZA, rj + Air,, 1 < i<c. (2.1)

Finally, we define pi - Aj/juj; it represents the long run average rate at which work arrives exogenously
lef

to the system destined for node i; p = P1 + + P. denotes the total long run average rate at which work

arrives exogenously to the system.

The following two theorems are proved in [9]:

Theorem 5.1. The Markov chain X = {X,} for JON is Harris ergodic id pi < 1 for each i (1 < i < c).

Theorem 5.2 If A > 0 (i.e. interarrival times have finite first moment) then the Markov process Z for

JON is a positive Harris recurrent Markov process (HR.dP) if pi < 1 for each i (1 < i < c). In particular it is

positive recurrent one-dependent regenerative (od-R) with a unique steady-state distribution r. Moreover,

Z(t) conve-ges to ir in total variation if and only if A is spread-out. (In general, ir{(X(t) = 0} = 0 and

hence the regeneration points of Z are not described by consecutive visits of X to the empty state).

From the above theorem we see that Z is an ergodic PRS with one-dependent cycles. Thus, so is any

continuous functional f(Z(t)) such as total queue length QT(t) (sum of the c queue lengths). Moreover,

total work in system w(t) is also; w(t) denotes the sum of all remaining service times of all customers in the

system (including their feedback) at time t (see section 4 of [9]). We thus obtain the following special cases

of the results in section 4:

Proposition 5.1. For a JON with pi < I for each i (1 < i < c), the following hold:

J P,(w(s) E .)ds - P,(w(O) E ") in total variation for each z,

P(QT(S) E .)ds - P,(QT(O) E -) in total variation for each z.

If E,(w(O)) < oo then

'jE,(w(s))ds - E,,(w(O)) for almost every - w.r.t.r.

12



1 t'

"tin E(QT(s))ds - E,(QT(O)) for almost every z w.r.t. r.

APPENDIX : A brief introduction to synchronous processes

Our use of the word synchronous is from [3]. Other names have been given to a synchronous process;

for example Serfozo [8] iefers to them as semi-stationary processes. In Rolski[7] they arise as Palm versions

of stationary processes (associated with point processes). Closely related to this is the general theory of

stationary marked point processes. In any case, the ergodic properties of synchronous processes are well

known in the literature. We state several such results the proofs of which can be found in, for example [3],

[4], [5], [7] and [8].

Let 0, : D - D denote the shift operator (Otz)(s) = z(t + s).

Theorem A.1. Suppose X is a PRS and f : Ds -Ris measurable. Let J, = J (f) =d.f,_l) f(OtoX)dt.

If Jo(f 1) < o a.s. and if either f > 0 a.s. or E{Ji(IfI)} < co then

1[ 9 E {J IIIlim - f (0, o X)ds =r-T- a.s. (A. 1)

where I denotes the invariant a-field associated with {(X,, Tn)}.

Let P0 denote the probability measure under which X is non-delayed, that is, P0 (X E A) = P(Go,()oX E

A).

Corollary A.1. Under the conditions of Theorem A.1, if in addition 2 is trivial (every set has probability

0 or 1) then {J,T : n > 1} is ergodic and hence a.s.

1 f' E l , 001 / °

1r ( o X)ds = A P°(O, o X E A; r(1) > s)ds. (A.2)

Under these circumstances, X is caled ergodic.

The following Corollary follows from (A.1) by an elementary application of Fubini's Theorem and the

Bounded Convergence Theorem.

Corollary A.2. Under the hypothesis of Theorem A.1, if in addition f is bounded then

-(f E(, o X)ds - r(f) L, E fE{ 11} (A.3)

13



x above defines a measure on D and (for reasons given below in Proposition A.I) is called the stationary

probability measure for X. n particular, by choosing f = 1A (an indicator function), we have "i,(A) - 7r(A)

for each Borel set A of V; thus the Cesaro averaged distributions converge weakly.

Proposition A.1. Let r be the stationary measure of a PRS X. Then under r, 6 = (0,) is measure

preserving on D, that is, for each Borel set A, '(A) = 7r(O_,A) for all s > 0. In particular, if X has

distribution 7r, then X is time stationary, that is, OX has the same distribution for each t > 0.

Let P" denote the probability measure under which X has distribution Tr, that is, P*(X E A) = ir(A).

From (A.2) we obtain for an ergodic synchronous process that

P'(X E A) = A P(O, o X E A; r(1) > s)ds. (A.4)

If X is positive recurrent but not ergodic then the RES of (A.4) still defines a probability measure on

D (but not necessarily the same as the 7r from (A.3)). In fact, more can be said:

Proposition A.2 For a PRS the RHS of (A.4) defines a probability measure on V (in general, not the

same as -r) under which 6 = (6,) is measure preserving.

14
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